Artificial Neural Network Application for Thermal Image Based Condition Monitoring of Zinc Oxide Surge Arresters
Abstract
Manual analysis of thermal image for detecting defects and classifying of condition of surge arrester take a long time. Artificial neural network is good tool for predict and classify data. This study applied neural network for classify the degree of degradation of surge arrester. Thermal image as input of neural network was segmented using Otsu’s segmentation and histogram method to get features of thermal image. Leakage current as a target of supervise neural network was extracted and applied Fast Fourier Transform to get third harmonic of resistive leakage current. The classification results meet satisfaction with error about 3%.
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v7.i3.pp593-605
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).