Word recognition and automated epenthesis removal for Indonesian sign system sentence gestures

Erdefi Rakun, I Gusti Bagus Hadi Widhinugraha, Noer Fitria Putra Setyono

Abstract


This research focuses on building a system to translate continuous Indonesian sign system (SIBI) gestures into text. In a continuous gesture, a signer will add an epenthesis (transitional) gesture, which is hand movement with no meaning but needed to connect the hand movement of one word with the next word in a continuous gesture. Reducing the number of irrelevant inputs to the model through automated epenthesis removal can improve the system's ability to recognize the words in continuous gestures. We implemented threshold conditional random fields (TCRF) to identify epenthesis gestures. The dataset consists of 2,255 videos representing 28 common sentences in SIBI. The translation system consists of MobileNetV2 as a feature extraction technique, removing epenthesis gestures found by the TCRF, and a long short-term memory (LSTM) for the classifier. With the MobileNetV2-TCRF-bidirectional LSTM model, the best word error rate (WER) and sentence accuracy (SAcc) were 33.4% and 16.2%, respectively. Intermediate-stage processing steps consisting of sandwiched majority voting of the TCRF and the removal of word labels whose number of frames is less than two frames, along with LSTM output grouping, were able to reduce WER from 33.4% to 3.4% and increase SAcc from 16.2% to 80.2%.

Keywords


Epenthesis gesture; SIBI; Long short-term memory; Sign language recognition; Threshold conditional random field

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v26.i3.pp1402-1414

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics