New lambda tuning approach of single input fuzzy logic using gradient descent algorithm and particle swarm optimization

Fauzal Naim Zohedi, Mohd Shahrieel Mohd Aras, Hyreil Anuar Kasdirin, Nurdiana Binti Nordin

Abstract


Underwater remotely operated vehicle (ROV) is important in underwater industries as well as for safety purposes. It can dive deeper than humans and can replace humans in a hazardous underwater environment. ROV depth control is difficult due to the hydrodynamic of the ROV itself and the underwater environment. Overshoot in the depth control may cause damage to the ROV and its investigated location. This paper presenting a new tuning approach of single input fuzzy logic controller (SIFLC) with gradient descent algorithm (GDA) and particle swarm optimization (PSO) implementation for ROV depth control. The ROV was modeled using system identification to simulate the depth system. Proportional integral derivative (PID) controller was applied to the model as a basic controller. SIFLC was then implemented in three tuning approaches which are heuristic, GDA, and PSO. The output transient was simulated using MATLAB Simulink and the percent overshoot (OS), time rise (Tr), and settling time (Ts) of the systems without and with controllers were compared and analyzed. The result shows that SIFLC GDA output has the best transient result at 0.1021% (OS), 0.7992s (Tr), and 0.9790s (Ts).

Keywords


Gradient descent algorithm; Particle swarm optimization; PID controller; Remotely operated vehicle; Single input fuzzy logic controller;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v25.i3.pp1344-1355

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics