Application of Immune Log-Normal Evolutionary Programming in Distributed Generation Installation

M. H. Mansor, I. Musirin, M. M. Othman, S. A. Shaaya, S. A. Syed Mustaffa

Abstract


Nowadays, the location and sizing of distributed generation (DG) units in power system network are crucial to be at optimal as it will affect the power system operation in terms of stability and security. In this paper, a new technique termed as Immune Log-Normal Evolutionary Programming (ILNEP) is applied to find the optimal location and size of distributed generation units in power system network. Voltage stability is considered in solving this problem. The proposed technique has been tested on the IEEE 26 bus Reliability Test System to find the optimal location and size of distributed generation in transmission network. In order to study the performance of ILNEP technique in solving DG Installation problem, the results produced by ILNEP were compared with other meta-heuristic techniques like evolutionary programming (EP) and artificial immune system (AIS). It is found that the proposed technique gives better solution in term of lower total system loss compared to the other two techniques.


Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v6.i3.pp730-736

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics