A hybrid divisive K-means framework for big data–driven poverty analysis in Central Java Province

Bowo Winarno, Budi Warsito, Bayu Surarso

Abstract


Clustering is essential in big data analytics, especially for partitioning high dimensional socioeconomic datasets to support interpretation and policy decisions. While K-Means is widely used for its simplicity and scalability, its strong sensitivity to initial centroid selection often leads to unstable results and slower convergence. Previous hybrid approaches, such as Agglomerative–K-Means, attempted to address this issue by using hierarchical clustering for centroid initialization; however, these methods rely on bottom-up merging, which can produce suboptimal initial partitions and increase computational overhead for larger datasets. To overcome these limitations, this study proposes a hybrid divisive–K-Means (DHC) model that employs top-down hierarchical splitting to generate more coherent initial centroids before refinement with K-Means. Using a multidimensional poverty dataset from Central Java Province provided by the Indonesian Central Bureau of Statistics (BPS), the performance of DHC was evaluated against standard K-Means and Agglomerative–K-Means. The assessment included execution time, convergence iterations, and cluster validity indices (Silhouette, Davies–Bouldin, and Calinski–Harabasz). Experimental results demonstrate that DHC reduces execution time by up to 97% and requires 40% fewer iterations than standard K-Means, while achieving comparable or improved cluster quality (e.g., CH Index increasing from 14.3 to 15.8). These findings indicate that the DHC model offers a more efficient and stable clustering solution, addressing the shortcomings of previous standard K-Means methods and improving performance for large-scale socioeconomic data analysis.


Keywords


Big data; Clustering; Divisive hierarchical; Hybrid model; K-Means; Poverty data analysis

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v41.i1.pp258-269

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics