Dynamic attendance system using face recognition via machine learning models

Nishant Upadhyay, Nidhi Bansal, Emil Velinov, Harshit Harshit, Abhay Sharma, Sanjeev Kumar

Abstract


Traditional methods to handle attendance have been implemented in the schools in the past and most of them are discouraging as they require that the institutions implement the use of paper and pen to get the results. To enhancing effectiveness and safeguarding, this paper presents a face recognition attendance system that mechanizes the usual attendance taking process. Using best practices in facial recognition, the system captures images of students’ faces, stores them, feeds them into a recognition model, and uses real-time facial recognition to mark attendance. This means that the system enjoys data encryption and password protected access that ensures data is safe. In the proposed system, the OpenCV face recognition libraries combined with machine learning algorithms for better face recognition ability with better efficiency. The results confirm that the system provides a reliable approach to handling attendance and it may debut in various contexts.


Keywords


Decent camera; Face recognition technique; OpenCV; Python; Spreadsheet;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v39.i2.pp1421-1430

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics