Development of ResNet-18 architecture to lesion identification in breast ultrasound images

Silfia Andini, Sumijan Sumijan, Iskandar Fitri

Abstract


Breast ultrasound (USG) is widely used for early breast cancer detection, but challenges such as noise, low contrast, and resolution limitations hinder accurate lesion identification. This study proposes a modified residual network-18 (ResNet-18) architecture for breast lesion segmentation, aimed at improving detection accuracy. The methodology involves preprocessing steps including red green blue (RGB) to Grayscale conversion, contrast stretching, and median filtering to enhance image quality. The modified ResNet-18 model introduces additional convolutional layers to refine feature extraction. The proposed model was trained and validated on 30 breast ultrasound images, with evaluation metrics including accuracy, sensitivity, and specificity. Experimental results indicate that the modified architecture outperforms the baseline model, achieving an average accuracy of 0.97093, sensitivity of 0.90056, and specificity of 0.97705. Validation by a radiology specialist confirms the model’s clinical relevance. These findings suggest that the enhanced ResNet-18 model has the potential to assist radiologists in more accurately identifying breast lesions. Future research should focus on expanding the dataset, integrating multi-modal imaging, and optimizing model generalizability for real-time clinical applications. The study contributes to advancing artificial intelligence (AI)-driven breast cancer diagnostics, supporting early detection, and improving patient outcomes.

Keywords


Breast; Identification; Lesion; ResNet-18; Ultrasound images

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v39.i2.pp1236-1248

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics