Weierstrass scale space representation and composite dilated U-net based convolution for early glaucoma diagnosis

Abdul Basith Zahir Hussain, Sulthan Ibrahim Mohamed Sulaiman

Abstract


Glaucoma is one of the common causes of blindness in the current world. Glaucoma is a blinding optic neuropathy characterized by the degeneration of retinal ganglion cells (RGCs). Accurate diagnosis and monitoring of glaucoma are challenging task through eye examinations and additional tests. To achieve accurate diagnosis of glaucoma with higher sensitivity and specificity, novel method called Weierstrass scale space representation and composite dilated U-net based convolution (WSSR-CDC) is introduced. At first, the Weierstrass transform scale space representation is employed to enhance image structures at various scales with higher accuracy of region of interest (ROI) detection using Euler’s identity. Next, CDC model is utilized with several layers. In input layer, preprocessed input images are taken as input. Fragment derivative are formulated for every preprocessed input. Log cosh dice loss function and optic cup to disc ratio are computed for segmented glaucoma detected results. With this, the accurate diagnosis of glaucoma is made with minimal error. The WSSR-CDC method was evaluated using the glaucoma fundus imaging dataset with several factors. The results show that the WSSR-CDC method outperforms conventional techniques, improving accuracy by 24% and sensitivity by 18%. It demonstrates promising results in fast, accurate, diagnosis of glaucoma.

Keywords


Composite dilated U-net based convolution; Deep learning; Glaucoma detection; Scale space representation; Weierstrass transform

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v38.i3.pp1661-1672

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics