Evaluating test case minimization with DB K-means

Sanjay Sharma, Jitendra Choudhary

Abstract


This paper evaluates a new method for test case minimization using clustering methods. Clustering is a method used on data sets to generate clusters of the same behavior; thus, unnecessary and redundant data sets are removed. Hence, minimized data sets are generated that represent the same coverage as the original data sets. This is achieved by a new method based on clustering that separates data sets into two sets, outlier and non-outlier, after reducing redundant test cases, combines minimized data sets named DB K-means. The methods individually worked on outlier and non-outlier data sets and removed redundant data sets to minimize test cases. The result of the proposed method is better than the simple clustering method used for test case minimization. The software development would only be complete with software testing. Enhancing software quality requires testing numerous test cases, a laborious and time-consuming process, testing a program using a set of inputs known as test cases. Test case minimization approaches are critical in software testing, as they optimize testing resources and provide comprehensive coverage. Minimization is the process of choosing a subset of test cases that accurately captures the behavior of the entire test suite to minimize duplicacy and increase efficiency.


Keywords


Data mining and clustering; K-means; Software testing; Test case reduction

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v41.i2.pp555-563

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics