Advanced control and optimization strategies for a 2-phase interleaved boost converter

Muhammad Adnan Samad, Usmonov Shukurillo Yulbarsovich, Sultonov Ruzimatjon Anvarjon Ugli, Saima Siddiqui

Abstract


Renowned for their adeptness in smoothing current flow and maintaining balanced operation, 2-phase interleaved boost converters (IBC) demonstrate remarkable efficiency, especially when confronted with demanding loads. This makes them a preferred choice for high-power applications such as renewable energy systems, high-power supplies, and electric vehicle power trains. In contrast, standard boost converters are typically favored in low-power, low-demand scenarios. The control of a 2-phase IBC involves running two boost converters in parallel but with a phase shift to reduce ripple currents, improve efficiency, and increase power handling capabilities. To ensure stability and optimal performance, the control strategies for these converters focus on achieving balanced operation between the phases. Hence, the control of 2-phase IBC presents a significant challenge due to their non-minimum phase behavior. The core focus of this article is the implementation of a composite model predictive control (MPC) technique to regulate a 2-phase interleaved boost converter. It introduces a novel approach, model predictive sliding mode control (MPSMC), which leverages the strengths of both MPC and sliding mode control (SMC). The benefits of this hybrid method, termed MPSMC, are thoroughly developed and simulated using MATLAB/Simulink. The results, as discussed in the respective section, provide an in-depth understanding of its effectiveness in practical applications.

Keywords


Boost converter; Interleaved boost converter; Model predictive control; Sliding mode control

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v36.i3.pp1421-1429

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics