Prevention of credit card fraud transaction using GA feature selection for web-based application

Kavuri Sreekanth, Ratnababu Mamidi, Thumu Srinivas Reddy, Kuruva Maddileti, Darivemula Deepthi

Abstract


Credit card fraud (CCF) is a regular event that generates financial losses. A considerable share of the significantly increased volume of internet transactions is made with credit cards. CCF detection programmes are consequently highly prioritised by banks and other financial organisations. These fraudulent transactions can come in a wide variety of formats and categories. To maintain data integrity, financial institutions support digital transactions. One of the most popular ways to pay the products and services can be done by both online and offline by using a credit card. Thus, there is a higher possibility of fraud during these financial transactions. This informs programmers to the requirement for a reliable technique for identifying successful fraud. Credit card users and businesses that accept credit cards have recently had to contend with the serious issue of CCF. Application-level frauds and transaction level frauds are the two categories into which CCF controlled frauds are divided. Therefore, utilizing genetic algorithm (GA) feature selection for web-based applications, it is advised to use this strategy as a method for the prevention of CCF transaction. This method's performance is evaluated based on a number of factors, including accuracy, recall, and specificity.

Keywords


Credit card fraud; Feature selection; Fraud detection; Genetic algorithm; Prevention

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v35.i3.pp1645-1652

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics