Performance evaluation of adaptive offloading model using hybrid machine learning and statistic prediction
Abstract
We introduce fast sensor diagnosis and focuses on intelligent offloading skills to enhance the sensor data screening efficiency. This study proposed the adaptive offloading model based on statistics-based prediction feedback and sensor candidate filtering. For the statistics-based filtering, sliding sensor grids and compounded sensor context were devised. This study also proposed hybrid prediction model using support vector machine (SVM) and k-nearest neighbors (KNN) machine training for the adaptive offloading. Therefore, the sensor information that is highly likely to be the cause of the actual device faults can be selected and transmitted, resulting in improved offloading performance. The test results through Google Colab show that the fault prediction accuracy of proposed models is 95%.
Keywords
Adaptive offloading model; Compound sensor context; Fault diagnosis; Machine learning; Pattern matching
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v34.i1.pp463-471
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).