Alzheimer’s disease prediction using three machine learning methods
Abstract
Alzheimer's disease (AD) is the most common incurable neurodegenerative illness, a term that encompasses memory loss as well as other cognitive abilities. The purpose of the study is using precise early-stage gene expression data from blood generated from a clinical Alzheimer's dataset, the goal was to construct a classification model that might predict the early stages of Alzheimer's disease. Using information gain (IG), a selection of characteristics was chosen to provide substantial information for distinguishing between normal control (NC) and early-stage AD participants. The data was divided into various sizes; three distinct machine learning (ML) algorithms were used to generate the classification models: support vector machine (SVM), Naïve Bayes (NB), and k-nearest neighbors (K-NN). Using the WEKA software tool and a variety of model performance measures, the capacity of the algorithms to effectively predict cognitive impairment status was compared and tested. The current findings reveal that an SVM-based classification model can accurately differentiate cognitively impaired Alzheimer's patients from normal healthy people with 96.6% accuracy. As discovered and validated a gene expression pattern in the blood that accurately distinguishes Alzheimer's patients and cognitively healthy controls, demonstrating that changes specific to AD can be detected far from the disease's core site.
Keywords
Alzheimer’s disease; Gene expression; Information gain; Microarraytechnology; Support vector machine
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v27.i3.pp1689-1697
Refbacks
- Alzheimer’s disease prediction using three machine learning methods
- Alzheimer’s disease prediction using three machine learning methods
- Alzheimer’s disease prediction using three machine learning methods
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).