Selecting the appropriate size of the graph for self-diagnostic model with graph density
Abstract
Self-diagnosis is the concept of self-diagnosing disease from symptoms. Wehavetheideatocreateself-diagnosticmodelsfromdiagnosticdata.
Thedatatobeanalyzedwerefromamedium-sizedhospitalinThailand.
Themodelisdividedbystructureddataandunstructureddata. Thefirststepistoprocessstructureddatawithclusteralgorithms. Thesecondstepistoevaluatetheunstructureddatatogroupsymptomsintoabipartitegraph. Afterthegraphwascreated,themodelwasdividedinto10levels,accordingtothelevelofsimilarity. Thisresearchaimstoapplytheconceptofdensitygraph,theKappasandmultiplelinegraphtoselectingtheappropriatediagnosismodel. Theresultsofallthreeexperimentsshowedthattheappropriatemodelwasatalevelofsimilarityat40%.Wehavetheideatocreateself-diagnosticmodelsfromdiagnosticdata.
Thedatatobeanalyzedwerefromamedium-sizedhospitalinThailand.
Themodelisdividedbystructureddataandunstructureddata. Thefirststepistoprocessstructureddatawithclusteralgorithms. Thesecondstepistoevaluatetheunstructureddatatogroupsymptomsintoabipartitegraph. Afterthegraphwascreated,themodelwasdividedinto10levels,accordingtothelevelofsimilarity. Thisresearchaimstoapplytheconceptofdensitygraph,theKappasandmultiplelinegraphtoselectingtheappropriatediagnosismodel. Theresultsofallthreeexperimentsshowedthattheappropriatemodelwasatalevelofsimilarityat40
Thedatatobeanalyzedwerefromamedium-sizedhospitalinThailand.
Themodelisdividedbystructureddataandunstructureddata. Thefirststepistoprocessstructureddatawithclusteralgorithms. Thesecondstepistoevaluatetheunstructureddatatogroupsymptomsintoabipartitegraph. Afterthegraphwascreated,themodelwasdividedinto10levels,accordingtothelevelofsimilarity. Thisresearchaimstoapplytheconceptofdensitygraph,theKappasandmultiplelinegraphtoselectingtheappropriatediagnosismodel. Theresultsofallthreeexperimentsshowedthattheappropriatemodelwasatalevelofsimilarityat40%.Wehavetheideatocreateself-diagnosticmodelsfromdiagnosticdata.
Thedatatobeanalyzedwerefromamedium-sizedhospitalinThailand.
Themodelisdividedbystructureddataandunstructureddata. Thefirststepistoprocessstructureddatawithclusteralgorithms. Thesecondstepistoevaluatetheunstructureddatatogroupsymptomsintoabipartitegraph. Afterthegraphwascreated,themodelwasdividedinto10levels,accordingtothelevelofsimilarity. Thisresearchaimstoapplytheconceptofdensitygraph,theKappasandmultiplelinegraphtoselectingtheappropriatediagnosismodel. Theresultsofallthreeexperimentsshowedthattheappropriatemodelwasatalevelofsimilarityat40
Keywords
Bipatite graph Graph density; Machine learning;
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v26.i3.pp1556-1563
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).