Grey wolf optimization-recurrent neural network based maximum power point tracking for photovoltaic application

Arumbu Venkadasamy Prathaban, Dhandapani Karthikeyan

Abstract


To increase the photovoltaic (PV) power-generation conversion, MPPT is the primary concern. This works explains about the grey wolf optimization (GWO - RNN)-based hybrid maximum power point tracking (MPPT) method to get quick and maximum photovoltaic (PV) power with zero oscillation tracking. The GWO – RNN based MPPT method doesn’t need additional sensor for measuring irradiance and temperature variables. The NLT is used for the multi-level inverter (MLI) control strategy to achieve less harmonics distraction and less switching losses with better voltage and current profile. This employed methodology brings remarkable aspects in the PV boosting potential extraction. A GWO – RNN controlled LUO converter is a zero output harmonic agreement impedance matching interface that is MPPT is performed by placing the PV modules between the load regulator power circuit and the load regulator power circuit. To actualize the proposed hybrid GWO – RNN model for the PV system, perturb and observe, RNN, ant colony optimization, and artificial bee colony MPPT techniques are employed. The MATLAB interfaced dSPACE interface is used to finish the hands-on validation of the intended grid-integrated PV system. The obtained results eloquently support the appropriate design of higher-performance control algorithms.

Keywords


Photovoltaic (PV) system GWO – RNN Hybrid MPPT LUO converter Control algorithms

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v26.i2.pp629-638

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics