Improving spam email detection using deep recurrent neural network
Abstract
Nowadays the entire world depends on emails as a communication tool. Spammers try to exploit various vulnerabilities to attack users with spam emails. While it is difficult to prevent spam email attacks, many research studies have been developed in the last decade in an attempt to detect spam emails. These studies were conducted using machine learning techniques and various types of neural networks. However, with all their attempts the highest accuracy acquired was 94.2% by random forest classifier. Deep learning techniques have demonstrated higher accuracy performance compared to the traditional machine learning algorithms. In this paper, deep recurrent neural network was used to determine whether an email is a spam email. After investigating different configurations for this method, the best setting that generated the highest accuracy was based on using Tanh as the activation function with the dropout rate equals to 0.1 and the number of epochs achieving 100. The proposed approach attained a high accuracy of 99.7% which surpassed the best accuracy (98.7%) obtained by the hybrid gated recurrent unit recurrent neural network approach.
Keywords
Activation function; Deep learning; Email spam detection; Machine learning; Recurrent neural network
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v25.i3.pp1625-1633
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).