Optimal location and sizing of distributed generation to minimize losses using whale optimization algorithm

Leong Shu Xuan, Tengku Juhana Tengku Hashim, Muhamad Najib Kamarudin

Abstract


The conventional power plants often bring in power quality concerns for instance high power losses and poor voltage profile to the network which are caused by the locations of power plants that are placed a distance away from loads. With proper planning and systematic allocation, the introduction of distributed generation (DG) into the network will enhance the performance and condition of the power system. This paper utilizes the optimization approach named whale optimization algorithm (WOA) in the search of the most ideal location and size of DG while ensuring the reduction of power losses and the minimization of the voltage deviation. WOA implementation is done in the IEEE 33-bus radial distribution system (RDS) utilizing MATPOWER and MATLAB software for no DG, one DG and two DGs installation. The outcome obtained from using WOA was compared to other well-known optimization methods and WOA has shown its competency after comparison; the optimal location of WOA with other methods showing almost the same result. The best result presented was the system with two DGs installed due to the losses of the system was recorded to be the least compared to one DG or no DG installation.

Keywords


Distributed generation; IEEE 33-bus radial distribution system; Power loss; Voltage deviation; Whale Optimization Algorithm

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v29.i1.pp15-23

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics