A deep web data extraction model for web mining: a review

Ily Amalina Ahmad Sabri, Mustafa Man

Abstract


The World Wide Web has become a large pool of information. Extracting structured data from a published web pages has drawn attention in the last decade. The process of web data extraction (WDE) has many challenges, dueto variety of web data and the unstructured data from hypertext mark up language (HTML) files. The aim of this paper is to provide a comprehensive overview of current web data extraction techniques, in termsof extracted quality data. This paper focuses on study for data extraction using wrapper approaches and compares each other to identify the best approach to extract data from online sites. To observe the efficiency of the proposed model, we compare the performance of data extraction by single web page extraction with different models such as document object model (DOM), wrapper using hybrid dom and json (WHDJ), wrapper extraction of image using DOM and JSON (WEIDJ) and WEIDJ (no-rules). Finally, the experimentations proved that WEIDJ can extract data fastest and low time consuming compared to other proposed method.
 

Keywords


Data extraction techniques; Document object model; Noisy information; Web data extraction; Wrapper extraction of image using DOM and JSON; Wrapper using hybrid DOM and JSON

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v23.i1.pp519-528

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics