Monte Carlo analysis for solar PV impact assessment in MV distribution networks
Abstract
The rapid penetration of solar photovoltaic (PV) systems in distribution networks has imposed various implications on network operations. Therefore, it is imperative to consider the stochastic nature of PV generation and load demand to address the operational challenges in future PV-rich distribution networks. This paper proposes a Monte Carlo based probabilistic framework for assessing the impact of PV penetration on medium voltage (MV) distribution networks. The uncertainties associated with PV installation capacity and its location, as well as the time-varying nature of PV generation and load demand were considered for the implementation of the probabilistic framework. A case study was performed for a typical MV distribution network in Malaysia, demonstrating the effectiveness of Monte Carlo analysis in evaluating the potential PV impacts in the future. A total of 1000 Monte Carlo simulations were conducted to accurately identify the influence of PV penetration on voltage profiles and network losses. Besides, several key metrics were used to quantify the technical performance of the distribution network. The results revealed that the worst repercussion of high solar PV penetration on typical Malaysian MV distribution networks is the violation of the upper voltage statutory limit, which is likely to occur beyond 70% penetration level.
Keywords
Monte Carlo analysis; MV distribution network; PV penetration; System power loss; Voltage rise
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v23.i1.pp23-31
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).