A self adaptive new crossover operator to improve the efficiency of the genetic algorithm to find the shortest path

Mrinmoyee Chattoraj, Udaya Rani Vinayakamurthy

Abstract


Route planning is an important part of road network. To select an optimized route several factors such as flow of traffic, speed limits of road. are concerned. Total cost of such a network depends on the number of junctions between the source and the destination. Due to the growth of the nodes in the network it becomes a tough job to determine the exact path using deterministic algorithms so in such cases genetic algorithms (GA) plays a vital role to find the optimized route. Crossover is an important operator ingenetic algorithm. The efficiency of thegenetic algorithmis directlyinfluenced by the time of a crossover operation. In this paper a new crossoveroperator closest-node pairing crossover (CNPC) is recommended which is explicitly designed to improve the performance of the genetic algorithm compared to other well-known crossover operators such as point based crossover and order crossover. The distance aspect of the network problem has been exploited in this crossover operator. This proposed technique gives a better result compared to the other crossover operator with the fitness value of 0.0048. The CNPC operator gives better rate of convergence compared to the other crossover operators.


Keywords


Chromosome representation; Convergence; Genetic algorithm; Order crossover; Point based crossover

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v23.i2.pp1011-1017

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics