Mining the crime data using naïve Bayes model

Lourdes M. Padirayon, Melvin S. Atayan, Jose Sherief Panelo, Carlito R. Fagela, Jr

Abstract


A massive number of documents on crime has been handled by police departments worldwide and today's criminals are becoming technologically elegant. One obstacle faced by law enforcement is the complexity of processing voluminous crime data. Approximately 439 crimes have been registered in sanchez mira municipality in the past seven years. Police officers have no clear view as to the pattern crimes in the municipality, peak hours, months of the commission and the location where the crimes are concentrated. The naïve Bayes modelis a classification algorithm using the Rapid miner auto model which is used and analyze the crime data set. This approach helps to recognize crime trends and of which, most of the crimes committed were a violation of special penal laws. The month of May has the highest for index and non-index crimes and Tuesday as for the day of crimes. Hotspots were barangay centro 1 for non-index crimes and barangay centro 2 for index crimes. Most non-index crimes committed were violations of special law and for index crime rape recorded the highest crime and usually occurs at 2 o’clock in the afternoon. The crime outcome takes various decisions to maximize the efficacy of crime solutions.


Keywords


Classification algorithm; Crime data; Mining; Naïve Bayes classifier

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v23.i2.pp1084-1092

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics