Performance evaluation of wireless data traffic in mm Wave massive MIMO communication
Ahmed Thair Al-Heety, Mohammad Tariqul Islam, Ahmed Hashim Rashid, Hasanain N. Abd Ali, Ali Mohammed Fadil, Farah Arabian
Abstract
Due to the evaluation of mobile devices and applications in the current decade, a new direction for wireless networks has emerged. The general consensus about the future 5G network is that the following should be taken into account; the purpose of thousand-fold system capacity, hundredfold energy efficiency, lower latency, and smooth connectivity. The massive multiple-input multiple-output (MIMO), as well as the Millimeter wave (mm Wave) have been considered in the ultra-dense cellular network (UDN), because they are viewed as the emergent solution for the next generations of communication. This article focuses on evaluating and discussing the performance of mm Wave massive MIMO for ultra-dense network, which is one of the major technologies for the 5G wireless network. More so, the energy efficiencies of two kinds of architectures for wireless backhaul networks were investigated and compared in this article. The results of the simulation revealed some points that should be considered during the deployment of small cells in the two architectures UDN with backhaul network capacity and backhaul energy efficiency, that the changing the frequency bands in Distribution approach gives the same energy efficiency reached to 600 Mb/s at 15 nodes while the Conventional approach results reached less than 100 Mb/s at the same number of nodes.
Keywords
5G; LOS; Mmwave MMIMO; Small cells; UDN
DOI:
http://doi.org/10.11591/ijeecs.v20.i3.pp1342-1350
Refbacks
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics