Channel length scaling and electrical characterization of graphene field effect transistor (GFET)

Reena Sri Selvarajan, Azrul Azlan Hamzah, Norliana Yusof, Burhanuddin Yeop Majlis

Abstract


The exclusive monoatomic framework of graphene makes it as an alluring material to be implemented in electronic devices. Thus, using graphene as charge carrying conducting channel material in Field Effect Transistors (FET) expedites the opportunities for production of ultrasensitive biosensors for future device applications. However, performance of GFET is influenced by various parameters, particularly by the length of conducting channel. Therefore, in this study we have investigated channel length scaling in performance of graphene field effect transistor (GFET) via simulation technique using Lumerical DEVICE software. The performance was analyzed based on electrical characterization of GFET with long and short conducting channels. It proves that conducting channel lengths have vast effect on ambipolar curve where short channel induces asymmetry in transfer characteristics curve where the n-branch is suppressed. Whereas for output characteristics, the performance of GFET heavily degraded as the channel length is reduced in short channels of GFET. Therefore, channel length scaling is a vital parameter in determining the performance of GFET in various fields, particularly in biosensing applications for ultrasensitive detection.


Keywords


Channel length, Short channel effect, GFET, Ambipolar, Transfer characteristics

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v15.i2.pp697-703

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics