A symmetry based anomaly detection in brain using cellular automata for computer aided diagnosis
Abstract
Computer aided diagnosis (CAD) is an advancing technology in medical imaging. CAD acts as an additional computing power for doctors to interpret the medical images which leads to a more accurate diagnosis of the disease.CAD system increases the chances of detection of brain lesions by assisting the physicians in decreasing the observational oversight in the early stage of diseases.This paper focuses on the development of a cellular automata based model to find the anomaly prone areas in human brains.Because of the bilateral symmetric nature of human brain, a symmetry based cellular automata model is proposed.An algorithm is designed based on the proposed model to detect the anomaly prone areas in brain images. The proposed model can be a standalone model or it can be incorporated to a sophisticated computer aided diagnosis system. By incorporating asymmetry information into a computer aided diagnosis system, enhances its performance in identifying the anomalies exists in bilaterally symmetrical brain images.
Keywords
Brain images, Computer aided diagnosis, Symmetry, Cellular automata, Anomaly
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v14.i1.pp471-477
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).