Convolutional neural network vs bag of features for bambara groundnut leaf disease recognition

Hafizatul Hanin Hamzah, Nurbaity Sabri, Zaidah Ibrahim, Dino Isa

Abstract


This paper investigates bambara groundnut leaf disease recognition using two popular techniques known as Convolutional Neural Network (CNN) and Bag of Features (BOF) with Speeded-up Robust Feature (SURF) and Support Vector Machine (SVM) classifier.  Leaf disease recognition has attracted many researchers because the outcome is useful for farmers. One of the crops that provide high income for farmers is bambara groundnut but the leaves are easily infected with diseases especially after the rain.  This could affect the crop productivity.  Thus, automatic disease recognition is crucial.  A new dataset that consists of 400 images of the infected and non-infected leaves of bambara groundnut has been constructed. The experimental results indicate that both of these techniques produce excellent leaf disease recognition accuracy.

Keywords


BoF, CNN, Leaf disease recognition, SURF, SVM

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v14.i1.pp368-374

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics