Automated Detection of Microaneurysmsusing Probabilistic Cascaded Neural Network

Jeyapriya J, K S Umadevi, R Jagadeesh Kannan

Abstract


The diagnosing features for Diabetic Retinopathy (DR) comprises of features occurring in and around the regions of blood vessel zone which will result into exudes, hemorrhages, microaneurysms and generation of textures on the albumen region of eye balls. In this study we presenta probabilistic convolution neural network based algorithms, utilized for the extraction of such features from the retinal images of patient’s eyeballs. The classifications proficiency of various DR systems is tabulated and examined. The majority of the reported systems are profoundly advanced regarding the analyzed fundus images is catching up to the human ophthalmologist’s characterization capacities.

Keywords


Blood vessel, Detection of Diabetic retinopathy; Retinal Nerve Hemorrhages; Microaneurysms

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v11.i3.pp1083-1093

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics