Optimization of PV Systems Using Data Mining and Regression Learner MPPT Techniques
Abstract
Supervised machine learning techniques such as artificial neural network (ANN) and ANFIS are powerful tools used to track the maximum power point (MPPT) in photovoltaic systems. However, these offline MPPT techniques still require large and accurate training data sets for successful tracking. This paper presents an innovative use of rational quadratic gaussian process regression (RQGPR) technique to generate the large and very accurate training data required for MPPT task. To confirm the effectiveness of the RQGPR technique, the combination of ANN and RQGPR as ANN-RQGPR technique results were compared with the conventional ANN technique results, and that of combined ANN and linear support vector machine regression as ANN-LSVM technique results under different weather conditions. Results show that ANN-RQGPR technique produced the overall best result and with an improved performance.
Keywords
ANN; Data mining technique; Support vector machine; Photovoltaic system MPPT
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v10.i3.pp1080-1089
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).