Robust Vision-based Multiple Moving Object Detection and Tracking from Video Sequences

Othman Omran Khalifa, Norun Abdul Malek, Kazi Istiaque Ahmed

Abstract


Detection of Moving Objects and Tracking is one of the most concerned issue and is being vastly used at home, business and modern applications. It is used to identify and track of an entity in a significant way. This paper illustrates the way to detect multiple objects using background subtraction methods and extract each object features by using Speed-Up Robust Feature algorithm and track the features through k-Nearest Neighbor processing from different surveillance videos sequentially. In the detection of object of each frame, pixel difference is calculated with respect to the reference background frame for the detection of an object which is only suitable for any ideal static condition with the consideration of lights from the environment. Thus, this method will detect the complete object and the extracted feature will be carried out for the tracking of the object in the multiple videos by one by one video. It is expected that this proposed method can commendably abolish the impact of the changing of lights

Keywords


Detection of Moving object; Tracking; Reference Background; SURF; KNN

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v10.i2.pp817-826

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics