Wavelet-Based Weighted Median Filter For Image Denoising Of MRI Brain Images

N. Rajalakshmi, K. Narayanan, P. Amudhavalli

Abstract


Preliminary diagnosing of MRI images from the hospital cannot be relied on because of the chances of occurrence of artifacts resulting in degraded quality of image, while others may be confused with pathology. Obtained MRI image usually contains limited artifacts. It becomes complex one for doctors in analyzing them. By increasing the contrast of an image, it will be easy to analyze. In order to find the tumor part efficiently MRI brain image should be enhanced properly. The image enhancement methods mainly improve the visual appearance of MRI images. The goal of denoising is to remove the noise, which may corrupt an image during its acquisition or transmission, while retaining its quality. In this paper effectiveness of seven denoising algorithms viz. median filter, wiener filter, wavelet filter, wavelet based wiener, NLM, wavelet based NLM, proposed wavelet based weighted median filter(WMF) using MRI images in the presence of additive white Gaussian noise is compared. The experimental results are analyzed in terms of various image quality metrics.


Keywords


Preprocessing, Median filter, Wavelet, Denoising, Image quality metrics

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v10.i1.pp201-206

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics