
TELKOMNIKA Indonesian Journal of Electrical Engineering 
Vol.12, No.7, July 2014, pp. 5613 ~ 5620 
DOI: 10.11591/telkomnika.v12i7.5739        5613 

  

Received January 4, 2014; Revised March 16, 2014; Accepted April 6, 2014 

Detecting Rice Growth Using ALOS Multispectral and 
Synthetic Aperture Radar  

 
 

Bambang H. Trisasongko*, Dyah R. Panuju, La Ode S. Iman 
Department of Soil Science and Land Resource, Bogor Agricultural University, 

Jalan Meranti, Dramaga, Bogor 16680, Indonesia,  
Phone/Fax: +62 2518422325 

*Corresponding author, e-mail: trisasongko@live.it 
 
 

Abstract 
Rice monitoring is a substantial to Asian countries, including Indonesia, since most inhabitants 

consume rice on a daily basis. As field survey requires substantial time and budget, one relies on remotely 
sensed data, especially taken through spaceborne platform. This research discusses multispectral and 
linearly polarized Synthetic Aperture Radar (SAR) from Advanced Land Observing Satellite and their 
applications to observe various rice growth information. It appears that both sensors provided useful rice 
growth data leading to the possibility on improving rice field information extraction. Classification scheme 
by means of Random Forest suggested that both data were fairly acceptable for timely monitoring.  
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1. Introduction 
Rice is a staple food for Indonesians. Although the demand tends to increase, rice has 

been planted in very few locations in Indonesia. Java has been serving as primary production 
center for the country since early 1900s [1]. This has been supported by suitable land 
resources, water availability and thorough irrigation networks [2]. Monitoring of rice can be 
established by field surveys or through remote sensing. In many cases, combining both 
approaches has been the most reliable. Optical remotely-sensed data have been serving as 
primary datasets. Nonetheless, clouds are persistent in many areas, where complementary data 
are then required. An alternative to this situation is Synthetic Aperture Radar (SAR) data. 

SAR data have been studied for rice monitoring considerably. Scientific literature tends 
to exploit more on C-band SARs, probably due to their continuous data supply since the era of 
ERS-1/SAR Advanced Microwave Imager in 1980s-1990s. Haldar and Patnaik [3], for instance, 
studied C-band Radarsat-1 coupled with AWiFS data to monitor Indian rabi rice. Another study 
in China [4] reported that C-band Envisat ASAR data successfully estimated leaf area index 
(LAI).  

L-band SAR was exploited as well, although in a lesser extent. Japan was the only L-
band SAR provider operating JERS-1/SAR at first and later ALOS Phased-Array L-Band SAR 
(PALSAR). Ishitsuka [5] presented a rice field observation in Japan using PALSAR single, dual 
and fully polarimetry. The research indicated that observation of Japanese small-scale rice field 
was quite unsuccessful, although the use of fully polarimetry was promising. Using dual 
polarized PALSAR data, Ling et al. [6] found that mapping rice fields in China was possible. 
Those research suggest that fully polarimetric SAR may overcome limitation in rice paddy 
monitoring, despite very limited scene coverage. In addition, multitemporal analysis using single 
or dual linearly polarized data has been favorable. Wang et al. [7] for example, relied on 
PALSAR multitemporal observation to study characteristics of Southeast China rice fields. The 
report of Ishitsuka [5] pioneered PALSAR fully polarimetric implementation in rice fields. 
Nonetheless, literature reviews suggested that there have been a few, if any, reports on the 
comparison of multispectral and fully polarimetric SAR data for rice field monitoring in tropical 
regions. 

Anticipating near future launch of PALSAR-2, this paper presents a study of SAR data 
analysis to obtain thematic map of rice growth, in comparison with multispectral dataset. To 
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extend Ishitsuka’s work [5], we employed PALSAR fully polarimetric data to observe their 
performance in an Indonesian test site. 
 
 
2. Research Method 

The research was located on rice fields managed by PT Sang Hyang Seri (SHS), a 
state enterprise responsible supplying rice seedling. Planted rice varieties include Sintanur, 
Bengawan and Ciherang. The latter has been popular in Indonesia and therefore selected as 
the only variety in our analysis. The area covering about 3,100 ha was located in Subang 
Regency, West Java (Figure 1). 

 
 

 
 

Figure 1. Research Location 
 
 
Rice is planted in blocks. A block occupies about 5-18 Ha with similar width of 200m. A 

group of blocks is managed by a sector manager. Transplanting by means of conventional (non-
mechanical) way is usually accomplished within 4-7 days for each block. This leads to variability 
of rice growing phase within site location, and allows continuation of rice supply to the seed 
plant. A typical distance between plants is 20cm. 

During the research, several datasets were collected. ALOS AVNIR-2 data were 
obtained from KKP3T project, acquired in 2008 and 2009. ALOS PALSAR fully polarimetric 
(PLR) datasets consist of 2007, 2009 and 2010 data. The 2010 PLR data are a subject of future 
investigation and are not being reported in this paper. 

In order to extend the analysis, additional datasets were acquired. A scene of ALOS 
PRISM was obtained to construct baseline thematic dataset in GIS software based on data 
fusion with AVNIR-2. Four algorithms were evaluated, however, Intensity-Hue-Saturation (IHS) 
[8] product was selected (Figure 2) to map rice fields. Additional datasets including baseline 
maps were obtained from BAKOSURTANAL.  

Most of datasets to assist the analysis were collected in situ. Field surveys were 
conducted during the 2009 and 2010 dry seasons, and additionally in 2011 (wet season). Based 
on the preliminary information provided by the company, sample blocks were selected. On 
those blocks, several measurements were taken, including averaged height and ground 
moisture condition (dry, wet or flooded). 

All ALOS images were provided by Japan Aerospace Exploration Agency (JAXA) in 
standard CEOS format. These data were then pre-processed using ASF MapReady 2.3.17 to 
retrieve the digital number (DN).  This format is not recommended for biophysical analysis, 
therefore computation of radiance was then performed using following equation: 
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Where 
L : radiance (W/m2.sr.μm) 
R : sensitivity 
O : signal output digital value 
C : dummy pixel output mean 
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Ba : offset of exposure 
BNL : non-linear offset 
B : output digital value – dark 
C’ : dummy pixel output – dark 
Ba’ : offset of exposure – dark 
 
 

 
 

Figure 2. A Subset of HSV Data to Construct Rice Field Map, AVNIR data © JAXA 
 
 
Based on the equation, radiance data were obtained and subsequently fed into NDVI 

analysis. Precisely 75 pixels were sampled for each date to observe variability of NDVI across 
research location.  

For comparison, two PALSAR PLR scenes were studied in this research. The PLR 
mode preserves original radar measurement and represented in complex number (known as 
Single Look Complex, SLC). The following equation was employed to derive backscatter 
coefficient of respective polarization [9] 

 

ACFQI  22
10

0 log10  (2) 

 
Where I and Q respectively represents real and imaginary part of SLC data. Conversion factor A 
was derived using a model [9] which is 32.0. Meanwhile, calibration factor CF value was -83 dB, 
as suggested by previous calibration study conducted by JAXA [9]. PALSAR datasets were 
converted by the same software. It provides a convenient way to extract backscatter coefficients 
(sigma nought, in decibel) from JAXA CEOS format. Similar to those of NDVI, 75 pixels were 
selected in further assessment and model building. 

 
 

Table 1. Random Forest Parameters 
Parameters AVNIR-2 PALSAR 

Random Forest Options   
 Number of Predictors 4 3 
 Number of Trees 100 100 
 Random Test Data Proportion 0.3 0.3 
 Subsample Proportion 0.5 0.5 
 Seed for Random Number Generator 1 1 

Stopping Parameters   
 Minimum Number of Cases 75 75 
 Minimum Number of Levels 10 10 
 Minimum Number in Child Nodes 5 5 
 Maximum Number of Nodes 100 100 
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The research employed supervised classification approach to obtain rice map. 
Sampling strategy was guided by planning data at block level. This was also enhanced by two 
field surveys in July-August 2009 and July 2010. Another data collection was taken in June 
2011 to improve field datasets. Based on the collection, additional sample sets were also 
established. These samples were employed for testing classification rules. Decision tree was 
chosen as classification algorithm, mainly due to its easy-to-comprehend, flexible rule [10]. 
Random Forests [11] was particularly selected to aid the construction of classification rules. The 
algorithm has been tested for various applications with superior results [12, 13]. Following 
Random Forest specification was tested. 

 
 

3. Results and Analysis 
3.1. Fluctuation of NDVI Values 

NDVI has been exploited on many biophysical observations from remotely sensed data. 
Using radiance data, NDVI values were retrieved and subsequently analyzed according to the 
field data (Figure 3). 

On early ages (early tillering), observed NDVI tends to be around 0. This is due to the 
fact that fields are flooded by water and the rice is very small, which leads to strong contribution 
of non-vegetative components (water and soil) on the respective pixel. When rice grows, 
chlorophyll increases, which is therefore reflected by rising NDVI value. However, in certain 
periods, NDVI values are dropped significantly. From field observations, it was found that many 
blocks were severely infested. Two major infestations in research area were due to rats and 
golden apple snails (Pomacea canaliculata). All infested fields (Figure 4) were replaced by new 
seedlings. This leads to uneven appearance on particular fields. 
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Figure 3. Observed NDVI over Ciherang 
Cultivar 

Figure 4. Infestation by Rats 

 
 

NDVI increases during vegetative phase until early generative (heading) stage. At this 
point, NDVI starts to decrease. As shown in Figure 3, NDVI of Ciherang variety reaches the 
peak at about 90 days. This result approves a previous study by means of time series MODIS 
observation in the same site [14]. 
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Figure 5. Decision Tree for AVNIR-2 Data 
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NDVI curve indicates that at least four growth stages are visible. Those are early 
tillering (less than 50 days), tillering (50-70), heading (71-90), and mature (more than 90). 
According to those classes, all pixels in the imagery were then classified exploiting Random 
Forest. Following figure shows a result of Random Forest decision tree, while its associated 
accuracy is presented in Table 2. 

 
 

Table 2. Accuracy in Per Cent, Based on 30% Sample Pixels 
 Classified 
Observed Early Tillering Tillering Heading Mature 
Early Tillering 99 0 0 1 

Tillering 3 96 0 1 
Heading     0 18 65 17 
Mature   3 1 1 96 

 
 

As shown in Figure 5, band 4 of AVNIR-2 played in crucial role in the development of 
rules, and selected by the algorithm as the main stem. This is due to the sensitivity of the band 
(820.6 nm) to vegetation, which has been widely known on a variety of optical sensors. Band 1, 
which is often used to identify water bodies, was substantial as well, especially on the 
discrimination of heading and mature stages. Rice fields are drained during the maturity of rice. 
Meanwhile, the Red band (Band 3) is employed to separate tillering and mature paddies. Lower 
value of Band 3 indicates a considerable involvement of soil/water background, and therefore 
these values fit into tillering class. 

Overall accuracy using AVNIR-2 data obtained in this experiment is reasonably good, 
as indicated in Table 2. However, it appears that heading is comparatively confused to tillering 
and mature stages. This is fairly understandable since the class has no significant features 
which influence distinctive spectral signature. NDVI pattern presented in Figure 3 also supports 
the argument, where heading is indicated by gentle slope, shortly before the peak (the end of 
vegetative phase). This also suggests that even Band 1 can be employed for discrimination of 
mature and heading, the bias remains considerably high. 
 
3.2. Backscatter Coefficient 
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Figure 6. Backscatter Patterns of Rice Phenology. Prolonged rice planting was due to extensive 
replanting in 2007. 
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Backscatter intensities have been employed to observe and to model interaction 
between radar signals and surface materials. This research focuses on the observation of 
sigma-nought among various ages (after transplanting). Due to monostatic nature of PALSAR 
sensor, VH data can be omitted as a consequence of the reciprocity theorem. Following figure 
shows variability of backscatter data extracted from combined 2007 and 2009 PLR data. 

As shown, HH has the highest backscatter coefficients. On HH polarization, higher 
amplification of backscatter is due to strong contribution of double bounce scattering 
mechanism. L-band HH signals are capable to penetrate canopy layer and therefore interact 
with soil background. Since the soil is usually flooded during peak vegetative stage, signals 
consecutively interact with soil and the rice.  

Higher backscatter contribution of HH was also reported by numerous researchers [6-
7]. At the early tillering, Wang et al. [7] reported low backscatter returns due to sparse 
vegetation, and therefore, overall scattering is dominated by specular propagation. This stage 
was missed in the research due to lack of PLR data and most blocks were in heading or pre-
harvest stages. However, it appears that our results are in line and complementary to previous 
findings [7], with similar absolute value of sigma-nought. Declining SAR returns at L-band were 
also reported [15]. Structural property, i.e. drying leaves, was reported as the main cause of the 
decline [7]. 

Amplification of HH was reported in mechanical-based planting system in Japan [16] 
and in China [6]. Although the Sang Hyang Seri did not implement fully mechanical system, field 
observation discovered that space between rice was regular (squared, with 20 cm space 
between plants). This regular space can create the Bragg scattering, which observable in high 
percentage of HH signals. 
 
 

 
 

Figure 7. Regular Pattern of Rice Planting 
 
 

Specifically for VV polarization, Figure 4 shows high variation of SAR backscatters. 
Previously, VV was demonstrated least useful for rice monitoring [15]. This is also reflected by 
our results. It appears that disagreement remains in fluctuated backscatter coefficients during 
rice growth, especially at C-band. Durden et al. [17], for instance, found that microwave returns 
tended to decrease during growing period at C-band AIRSAR. However, Tsang et al. [18] model 
indicated that there is an increase of SAR backscatters of ERS-1 VV polarization. 

Low returns of SAR signals at HV are primarily due to complex propagation of signals in 
vegetative cover. This was extensively reported by numerous papers, including Santoro et al. 
[19]. We found that HV pattern of Ciherang cultivar is quite similar to Ling et al. [6] observation 
in East China using dual-polarized PALSAR. HV pattern is also comparable to Wang et al. [7] 
findings. 

PALSAR data span was quite different than AVNIR-2. This created a condition where 
PALSAR data contain only heading and mature phases. Using Random Forest, a simple 
separation rule between heading and mature was established (Figure 8). It is interesting that VV 
polarization was selected by Random Forest algorithm, even assessment of backscatter 
showed higher preference of HH. This is probably due to the effect of grouping rice age into 
growth class (heading and mature). Another source of the bias would be parameter selection, 
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which is subject for further assessment. Due to simple separation, it is obvious to see that the 
overall accuracy tends to be higher (Table 3). Similar to those in AVNIR-2, heading was harder 
to detect in all PALSAR PLR data. Most of pixels belong to heading was reportedly misclassified 
into mature class. 
 
 

 
 

Figure 8. Decision Tree for PALSAR Linear Polarization 
 
 

Table 3. Confusion Matrix Based on 30% Samples 
 Classified 

Observed Heading Mature 

Heading    65 17 

Mature   1 96 

 
 
4. Conclusion 

This research demonstrates the capabilities of ALOS sensors to retrieve invaluable 
information on rice fields. It was shown that growth disturbance, especially in transplanting and 
early vegetative stages, was somewhat visible from NDVI plot. Vegetative stage of Ciherang 
cultivar was peaked at about 90 days, similar to previous observation using time series MODIS 
data. Classification by means of Random Forest on AVNIR-2 data produced substantially high 
accuracy. However, improvements are still required since heading stage was confused with 
tillering and mature stages. The research was unable to collect PLR data covering full phase of 
rice production. In this case, early tillering and tillering phases were missing. Therefore, full 
conclusion cannot be drawn using solely available PLR data. However, it is interesting to 
observe that difficulties to discriminate heading stage are quite similar on both AVNIR-2 and 
PLR data. 

These all suggest that AVNIR-2 and PALSAR fully polarimetric datasets are useful to 
monitor various rice growths. Nonetheless, several issues need to be addressed. Availability 
has been a primary obstacle for fully polarimetric SAR. It is suggested that regular fully 
polarimetric acquisition cycle needs to be revised to accommodate a thorough rice field 
observation. Acquisitions in a couple of weeks after mid-season of rainy monsoon (about 
December-January at the test site) are suggested to examine applicability of SAR data for 
estimating rice productivity. 
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