Design of face recognition based effective automated smart attendance system
Abstract
The issue of automatic attendance marking has been successfully resolved in recent years through the utilization of standard biometric approaches. Although this strategy is automated and forward-thinking, its use is hindered by time constraints. Acquiring a thumb impression requires the individual to form a line, which might lead to inconvenience. The innovative visual system utilizes a computer and camera to detect and record students’ attendance based on their facial features. This article presents a face recognition based automatic attendance system. This system includes- image acquisition, image enhancement using histogram equalization, image segmentation by fuzzy C means clustering technique, building classification model using K-nearest neighbour (KNN), support vector machine (SVM) and AdaBoost technique. For experimental work, 500 images of students of a class are selected at random. Accuracy of KNN algorithm in proposed framework is 98.75%. It is higher than the accuracy of SVM (96.25%) and AdaBoost (86.50%). KNN is also performing better on parameters likesensitivity, specificity, precision and F_measure.
Keywords
Accuracy; Face recognition; Fuzzy C means; Histogram equalization; K-nearest neighbor; Smart attendance system
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v38.i3.pp2020-2030
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).