Parameter Estimation of DC Motor using Adaptive Transfer Function Based on Nelder-Mead Optimisation
Abstract
This paper explains an adaptive method for estimation of unknown parameters of transfer function model of any system for finding the parameters. The transfer function of the model with unknown model parameters is considered as the adaptive model whose values are adapted with the experimental data. The minimization of error between the experimental data and the output of the adaptive model have been realised by choosing objective function based on different error criterions. Nelder-Mead optimisation Method is used for adaption algorithm. To prove the method robustness and for students learning, the simple system of separately excited dc motor is considered in this paper. The experimental data of speed response and corresponding current response are taken and transfer function parameters of dc motors are adapted based on Nelder-Mead optimisation to match with the experimental data. The effectiveness of estimated parameters with different objective functions are compared and validated with machine specification parameters.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v9.i3.pp696-702
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).