Random Sampling and Signal Bregman Reconstruction Based on Compressed Sensing
Abstract
Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted from as little as possible of the data by applying CS and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the structure and content of the information in the signal. In this paper, the signal is the sparse in the Fourier transform and random sparse sampling is advanced by programing random observation matrix for peak random base. The signal is successfully restored by the use of Bregman algorithm. The signal is described in the transform space, and a theoretical framework is established with a new signal descriptions and processing. By making the case to ensure that the information loss, signal is sampled at much lower than the Nyquist sampling theorem requiring rate,but also the signal is completely restored in high probability. The random sampling has following advantages: alias-free sampling frequency need not obey the Nyquist limit and higher frequency resolution.
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v4.i2.pp365-372
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).