A hybrid edge–cloud computing framework for low-latency, energy-efficient, and sustainable smart city applications
Abstract
Smart-city applications demand ultra-low latency, high reliability, and sustainable operation, which are difficult to achieve using cloud-only or edge-only computing paradigms. This study suggests a carbon-conscious architecture for managing smart cities’ intelligent job offloading between the edge and the cloud. This is made possible by the Internet of Things and driven by reinforcement learning (RL). A deep Q-network (DQN) is used to dynamically assign tasks to cloud servers and edge nodes based on how much energy they use, how long it takes to send data over the network, and how much bandwidth they have. A lightweight permissioned blockchain layer makes sure that data is correct across all of its parts, and carbon-aware scheduling puts low-carbon resources first. EdgeCloudSim is used to test the system with real-world smart city workloads. When compared to systems that simply use the cloud, the proposed solution showed a 64.6% drop in average latency, a 24.2% drop in energy use, and a 15% drop in carbon emissions. Combining artificial intelligence (AI)-driven orchestration with scheduling that takes sustainability into account in a hybrid edge-cloud environment yields positive outcomes.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v41.i2.pp791-799
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).