Intelligent cybersecurity framework for real-time threat detection and data protection
Abstract
Organizations operating across cloud, mobile, and enterprise environments are increasingly exposed to sophisticated cyberattacks that traditional rule-based security systems struggle to detect in real time. These legacy approaches lack adaptability, making it difficult to continuously monitor distributed networks, identify anomalies, and prevent zero-day threats before sensitive data is compromised. To address these challenges, this paper proposes an intelligent cybersecurity framework that integrates real-time network monitoring with AI/ML-based anomaly detection models. The framework utilizes structured preprocessing, feature engineering, and supervised learning on the UNSW-NB15 dataset (version 2015, Cyber Range Lab) to enhance detection accuracy and reduce response time. The experimental setup evaluates multiple ML classifiers using stratified train- test splitting and 5-fold cross-validation, ensuring robust performance validation. Experimental results show that the random forest (RF) model achieves 94.28% accuracy, a 2.93% false-positive rate, and an average detection time of 0.41 seconds, outperforming other baseline models. In addition to the detection layer, the framework incorporates mobile device management (MDM) controls and cloud-storage policy enforcement to strengthen organizational security posture. The main contributions of this work include: i) a unified AI/ML-driven anomaly detection model, ii) integration of MDM and cloud policy enforcement for end-to-end protection, and iii) improved empirical performance validated using a benchmark cybersecurity dataset. This combined architecture significantly enhances real-time threat identification and reduces alert latency, supporting a more security-aware and resilient enterprise environment.
Keywords
Anomaly detection; Cloud security; Cybersecurity; Data security; Machine learning; Network monitoring; Threat recognition
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v41.i2.pp504-514
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).