Alzheimer’s disease stage prediction using a novel transfer learning-Alzheimer’s network architecture
Abstract
The root cause of Alzheimer’s disease (AD) is unknown except for a very tiny number of family instances caused by a genetic mutation. A thorough examination of particular brain disorders’ tissues is necessary to correctly identify the circumstances using scans of magnetic resonance imaging (MRI), and specific non-brain tissues, like the neck, skin, muscle, and fat, make further investigation challenging and can be seen in MRI scans. This work aims to use the FSL-BET skull stripping tool to remove non-brain tissues and extract the significant region of the brain- deep learning (DL) techniques rather than machine learning (ML) models helpful in classification and predictions. The most frequent issue with DL models is which needs a lot of training data, causes to problems with class imbalance. To avoid imbalance issues, we used data augmentation to ensure that the samples were distributed equally among the classes. A novel transfer learning Alzheimer’s disease network (TL-AzNet) based visual geometry group-19 (VGG19) technique was developed in this study. Conducted a comparison study using the base and suggested models, comparing over data with oversampling versus non-oversampling. The novel model predicted AD with a 95% accuracy rate.
Keywords
Data augmentation; Deep learning; FSL-BET; Image classification; TL-AzNet; Transfer learning
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v40.i1.pp518-529
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).