Optimization of hybrid PV-wind systems with MPPT and fuzzy logic-based control
Abstract
The growing demand for sustainable and reliable energy solutions has driven the development of hybrid renewable energy systems (HRES) that combine multiple energy sources. This research explores the integration of solar energy and wind energy systems, utilizing permanent magnet synchronous generators (PMSG) for wind energy conversion. PMSGs are gaining popularity due to their high efficiency and ability to operate effectively in variable-speed wind conditions, making them ideal for hybrid systems. The study focuses on optimizing the energy extraction from both PV and wind systems using maximum power point tracking (MPPT) boost converters. The control for the MPPT boost converters is based on fuzzy logic (FL), a method that offers flexibility and adaptability in managing the non-linear and dynamic characteristics of renewable energy sources. A hybrid system consisting of PV, wind energy, and a battery storage system connected to a DC bus is simulated using MATLAB Simulink. The model demonstrates the effectiveness of integrating PV and wind energy with MPPT-controlled boost converters and fuzzy logic control, ensuring optimal energy utilization, stable system performance, and efficient energy storage. This research underscores the potential of hybrid renewable energy systems, showcasing how advanced control strategies can significantly improve the efficiency and reliability of energy generation and storage solutions.
Keywords
DC-DC converter; Energy storage; Fuzzy logic control; HRES; MPPT; Solar energy; Wind energy
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v39.i2.pp747-760
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).