Formalization of materialized view problem in ontology-based databases

Bery Leouro Mbaiossoum, Narkoy Batouma, Atteib Doutoum Mahamat, Ouchar Cherif Ali, Lang Dionlar, Ladjel BELLATRECHE

Abstract


Materialized views are essential for optimizing the performance of traditional databases and data warehouses by accelerating query responses. However, their substantial storage requirements and the impracticality of materializing all possible views raise the problem of selecting which views to persist, a fundamental physical design challenge. This article presents a rigorous formalization of this problem within the context of semantic databases. The methodology employed includes a comprehensive literature review aimed at identifying the variety of se-mantic database representations. This analysis revealed a significant diversity in data models and query languages used. Based on this analysis, a generic formalization framework is pro-posed. This framework enables the expression of various resolution approaches to the materialized view selection problem, taking into account the specificities of semantic databases. It offers broad applicability to any database management system, providing a common language to describe and compare view selection methods.

Keywords


Materialized views; Ontology-based-databases formalization; Semantic databases; SPARQL queries

Full Text:

PDF

References


Baralis, E., S. Paraboschi, et E. Teniente (1997). Materialized view

selection in a multidimensional database. pp. 156–165.

Gupta, H. (1997). Selection of views to materialize in a data

warehouse. In ICDT, pp. 98–112.

G. Wang et al., "Temporal Graph Cube," in IEEE Transactions on

Knowledge and Data Engineering, vol. 35, no. 12, pp. 13015-

, 1 Dec. 2023.

Bimonte, S., Gallinucci, E., Marcel, P. et al. Logical design of

multi-model data warehouses. Knowl Inf Syst 65, 1067–1103

(2023).

SRINIVASARAO, Popuri et SATISH, Aravapalli Rama. Multi‐

objective materialized view selection using flamingo search

optimization algorithm. Software: Practice and Experience, 2023,

vol. 53, no 4, p. 988-1012.

YADAV, Anjana et SINGH, Balveer. Improve the performance of

multidimensional data for OLAP by using an optimization

approach. In : AIP Conference Proceedings. AIP Publishing, 2023.

Castillo, R. et U. Leser (2010). Selecting materialized views for rdf

data. In Proceedings of the 10th international conference on Current

trends in web engineering, ICWE’ 10, pp. 126–137.

Goasdoué, F., K. Karanasos, J. Leblay, et I. Manolescu (2011).

View selection in semantic web databases. Computer science,

INRIA. Rapport de recherche no. 7738.

Dritsou, V., P. Constantopoulos, A. Deligiannakis, et Y. Kotidis

(2011). Optimizing query shortcuts in rdf databases. In ESWC

(2)’11, pp. 77–92.

S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.

McGuinness, P. Patel-Schneider et L. Stein, (2004) « Owl web

ontology language reference », W3C.

ISO-13584-42, (1998) « Industrial Automation Systems and

Integration Parts LIBrary Part 42 : Description methodology :

Methodology for Structuring Parts families », rap. tech., ISO,

B. McBride B. (2001). Jena : Implementing the rdfmodel and syntax

specification. In Proceedings of the 2nd International Workshop on

the Semantic Web.

Murray, C. (2005). Oracle spatial resource description framework

(rdf). Oracle Corporation.

Murray, C. (2008.). Oracle database semantic technologies

developer’s guide i. Oracle Corporation.

Broekstra, J., A. Kampman, et F. van Harmelen (2002). Sesame : A

generic architecture for storing and querying rdf and rdf schema. In

Proceedings of the 1st International Semantic Web Conference

(ISWC’02), pp. 54–68.

Alexaki, S., V. Christophides, G. Karvounarakis, D. Plexousakis, et

K. Tolle (2001). The ics-FORTH RDFSuite: Managing voluminous

RDF description bases. In Proceedings of the 2nd International

Workshop on the Semantic Web, pp. 1–13.

J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Panet Y. Yu,

(2007) « Sor: a practical system for ontology storage, reasoning and

search », in Proceedings of the 33rd international conference on

Very large data bases (VLDB’07), p. 1402–1405.

Theodoratos, D. et T. Sellis (1999). Designing data warehouses.

Bery Mbaiossoum, Ladjel Bellatreche, Stéphane Jean, Mickael

Baron (2013), Comparaison et Evaluation des Systèmes de Gestion

de Base de Données Sémantiques, Ingénierie des Systèmes

d’Information (ISI), 18(3): 39-63.

G. Pierra, H. Dehainsala, Y. Ait-Ameuret L. Bellatreche (2005), «

Base de Données à Base Ontologique : principes et mise en œuvre

», Ingénierie des Systèmes d’Information, vol. 10, p. 91–115.

GILLENSON, Mark L. Fundamentals of database management

systems. John Wiley & Sons, 2023.

Frasincar, F., G.-J. Houben, R. Vdovjak, et P. Barna (2004). Ral :

An algebra for querying rdf. World Wide Web 7(1), 83–109.

Prud’hommeaux, E. et A. Seaborne (2005). Sparql query language

for rdf.

Prud, E., & Seaborne, A. (2006). SPARQL query language for

RDF.

Garlik, S. H., Seaborne, A., & Prud’hommeaux, E. (2013).

SPARQL 1.1 query language. World Wide Web Consortium.




DOI: http://doi.org/10.11591/ijeecs.v40.i3.pp1430-1438

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics