Enhancing TV program success prediction using machine learning by integrating people meter audience metrics with digital engagement metrics

Khalid El Fayq, Said Tkatek, Lahcen Idouglid

Abstract


With the emergence of numerous media services on the internet, television (TV) remains a highly demanded medium in terms of reliability and innovation, despite intense competition that compels us to devise strategies for maintaining audience engagement. A key indicator of a TV channel’s success is its reach, representing the percentage of the target audience that views the broadcasts. To aid TV channel managers, the industry is exploring new methods to predict TV reach with greater accuracy. This paper investigates the potential of advanced machine learning models in predicting TV program success by integrating people meter audience metrics with digital engagement metrics. Our approach combines convolutional neural networks (CNNs) for processing digital engagement data, long short-term memory (LSTM) networks for capturing temporal dependencies, and gaussian processes (GPs) for modeling uncertainties. Our results demonstrate that the best-performing hybrid model achieves a prediction accuracy of 95%. This study contributes to the field by addressing manual scheduling errors, financial losses, and decreased viewership, providing a more comprehensive understanding of audience behavior and enhancing predictive accuracy through the integration of diverse data sources and advanced machine learning techniques.

Keywords


Audience reaches; Data regression models; Digital engagement; Media analytics; Television audience prediction; Watermarking audience

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v39.i1.pp353-363

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics