High-accuracy classification of banana varieties using ResNet-50 and DenseNet-121 architectures

Suastika Yulia Riska, Danang Arbian Sulistyo, Farah Shafiyah Siti Maharani

Abstract


Bananas are a popular fruit in Indonesia due to their affordability, availability, and rich nutritional content. Identifying different banana types is crucial for consumption and processing, yet some types are difficult to distinguish visually. This study aims to classify banana types using convolutional neural network (CNN) architectures, specifically ResNet-50 and DenseNet-121. The dataset consists of five banana classes, which were processed using preprocessing techniques to enhance image quality prior to model training. The results demonstrate that the proposed models can classify banana types with high accuracy. The research methodology includes data collection, preprocessing, CNN model implementation, and performance evaluation using a confusion matrix. The dataset was split into training and testing sets in an 80:20 ratio, with validation data extracted from the training set in a 90:10 ratio. The models were trained on the training data, validated with validation data, and tested on the testing data to assess final performance. The study concludes that the CNN architectures employed are effective in classifying banana types, with the DenseNet-121 model achieving 93.02% accuracy, outperforming the ResNet-50 model, which achieved 92.44%. These results indicate that the models can capture essential features from banana images and produce accurate predictions.

Keywords


Banana classification; CNN; DenseNet-121; Image processing; ResNet-50

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v39.i1.pp322-335

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics