A comparative study of CNN architectures for the detection of tomato leaf diseases

Soumia Benkrama, Benyamina Ahmed, Nour El Houda Hemdani

Abstract


Recent advancements in computer vision and machine learning (ML) have revolutionised various sectors, including precision agriculture (PA). In our study, we focused on detecting tomato leaf diseases (TLD) using deep learning (DL) techniques. Using a convolutional neural network (CNN) model, we developed an agricultural image index to accurately detect TLD. By utilizing available datasets from Kaggle, we trained our model to recognize various TLDs. To determine the most effective one, we compared multiple architectures, including VGG, ResNet, and EfficientNetB1. The obtained results demonstrated a classification accuracy of over 99% on the test set. This approach has allowed us to accelerate and enhance the disease detection process, positively impacting agricultural communities by reducing crop losses and enabling early intervention in case of disease outbreaks. Our study highlights the effectiveness of CNN models in the detection of TLD, paving the way for future applications in PA.

Keywords


Convolutional neural networks; Deep learning; EfficientNetB1; Precision agriculture; ResNet; VGG

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v39.i3.pp1587-1594

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics