For S-band WLAN applications, a patch antenna design, simulation, and optimization
Abstract
A rectangular microstrip patch antenna for 2.45 GHz is designed, tested, and analyzed in this study. It uses two substrate materials (design I and II) with different permittivity levels. RT5880 (design-I) and FR-4 (design-II) substrates have a thickness of 1.57 mm and 1.6 mm, respectively. Design-I and design-II substrates have relative permittivity of 2.2 and 4.3, respectively. Performance and efficiency are considered due to the substrate material's relative permittivity and thickness; return loss (S11), voltage standing wave ratio (VSWR), gain, directivity, surface current, and efficiency. Design II and design I have 3.25 dBi and 8.089 dBi gains, respectively, and 5.92 dBi and 8.64 dBi directivity, respectively. Design I had the best antenna efficiency, 93.64%, compared to design II, 54.96%. In contrast to the design I and design II, which had return losses (S11) of -53.29 dB and -51.38 dB, each of the suggested antennas had a return loss (S11) of more than -50 dB. The VSWR for design I is 1.0043, while the Design II material is 1.0054. This study aims to reduce return loss (S11) and close the VSWR to 1. This proposed design improves antenna gain, directivity, and efficiency for future wireless applications on wireless local area networks (WLANs).
Keywords
FR-4; Microstrip patch antenna; Return loss (S11); Rogers RT5880; Voltage standing wave ratio; Wireless LANs
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v38.i3.pp1613-1623
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).