A GRU-based approach for botnet detection using deep learning technique
Abstract
The increasing volume of network traffic data exchanged among interconnected devices on the internet of things (IoT) poses a significant challenge for conventional intrusion detection systems (IDS), especially in the face of evolving and unpredictable security threats. It is crucial to develop adaptive and effective IDS for IoT to mitigate false alarms and ensure high detection accuracy, particularly with the surge in botnet attacks. These attacks have the potential to turn seemingly harmless devices into zombies, generating malicious traffic that disrupts network operations. This paper introduces a novel approach to IoT intrusion detection, leveraging machine learning techniques and the extensive UNSW-NB15 dataset. Our primary focus lies in designing, implementing, and evaluating machine learning (ML) models, including K-nearest neighbors (KNN), random forest (RF), long short-term memory (LSTM), and gated recurrent unit (GRU), against prevalent botnet attacks. The successful testing against prominent Bot- net attacks using a dedicated dataset further validates its potential for enhancing intrusion detection accuracy in dynamic and evolving IoT landscapes.
Keywords
Botnet; Gated recurrent unit; K-nearest neighbors; Long short-term memory; Random forest; SelectKBest
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v38.i2.pp1098-1105
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).