Enhancing uncollateralized loan risk assessment accuracy through feature selection and advanced machine learning techniques
Abstract
Accuracy in evaluating the risk of credit applications is crucial for lenders, particularly when dealing with unsecured loans. Accuracy can be enhanced by selecting suitable features for a machine learning model. To better identify high-risk borrowers, this study applies an elaborate feature selection technique. This study uses the light gradient boosting machine (LGBM) Classifier model with boosting type gradient boosting decision tree (GBDT) algorithm and n_estimator value 100 for feature selection process. This work uses advanced machine learning techniques namely stacking to improve accuracy model perform. The dataset consists of 307,506 applicants from European lenders who have applied for loans in Southeast Asia. Each applicant is described by 126 different features. Using GDBT algorithm GBDT, 30 best features were selected based on their maximum accuracy compared to another feature. By employing a stacking technique that combines the LGBM, gradient boosting (GB), and random forest (RF) models, and utilizing logistic regression (LR) as the final estimator, an accuracy of 0.99637 was reached. This study demonstrates an improved the accuracy compared to previous research. This discovery indicates that utilizing feature selection and stacking method can provide one of the most precise choices for modelling the binary class classification among the current models.
Keywords
Accuracy; Feature selection; Machine learning; Risk assessment; Stacking; Uncollateralized loan
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v38.i2.pp1149-1161
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).