Elevating intelligent voice assistant chatbots with natural language processing, and OpenAI technologies
Nilesh B. Korade, Mahendra B. Salunke, Amol A. Bhosle, Gayatri G. Asalkar, Bechoo Lal, Prashant B. Kumbharkar
Abstract
Businesses can offer support to customers outside of usual business hours and across time zones by employing chatbots, which can provide round-the-clock support. Chatbots can react to user inquiries quickly, reducing wait times and improving customer satisfaction. It becomes challenging for the chatbot to differentiate between two queries that users pose that carry the same meaning, making it harder for it to understand and react appropriately. The aim of this research is to develop a chatbot capable of understanding the semantic meaning of questions as well as recognizing various speech patterns, accents, and dialects to provide accurate responses. In this research, we have implemented a voice-enabled chatbot system where users can verbally pose questions, and the chatbot provides responses through voice assistance. The architecture incorporates several key components: a question-answer database, OpenAI embedding for semantic representation, and OpenAI text-to-speech (TTS) and speech-to-text (STT) for audio-to-text and text-to-audio conversion, respectively. Specifically, OpenAI embedding is utilized to encode questions and responses into vector representations, enabling efficient similarity calculations. Additionally, extreme gradient boosting (XGBoost) is trained on OpenAI embeddings to identify similarities between user queries and questions within the dataset. This framework allows for seamless interaction between users and the chatbot, leveraging state-of-the-art technologies in natural language processing (NLP) and speech recognition. The outcome demonstrates that the XGBoost model delivers excellent outcomes when it is trained on OpenAI embedding and tuned with the particle swarm optimizer (PSO). The OpenAI-generated embedding has good potential for capturing sentence similarity and provides excellent information for models trained on it.
Keywords
Chatbots; Embedding; OpenAI; Particle swarm optimizer; Speech to text; Text to speech; XGBoost
DOI:
http://doi.org/10.11591/ijeecs.v37.i1.pp507-517
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics