Trends in machine learning for predicting personality disorder: a bibliometric analysis

Heni Sulistiani, Admi Syarif, Warsito Warsito, Khairun Nisa Berawi

Abstract


Over the last decade, research on artificial intelligence (AI) in the medical field has increased. However, unlike other disciplines, AI in personality disorders is still in the minority. For this reason, we conduct a map research using bibliometric and build a visualization map using VOSviewer in AI to predict personality disorders. We conducted a literature review using the systematic literature review (SLR) method, consisting of three stages: planning, implementation, and reporting. The evaluation involved 22 scientific articles on AI in predicting personality disorders indexed by Scopus Quartile Q1–Q4 from the Google Scholar database during the last five years, from 2018–2023. In the meantime, the results of bibliometric analysis have led to the discovery of information about the most productive publishers, the evolution of scientific articles, and the quantity of citations. In addition, VOSviewer’s visualization of the most frequently occurring terms in abstracts and titles has made it easier for researchers to find novel and infrequently studied subjects in AI on personality disorders.

Keywords


Artificial intelligence; Bibliometric analysis; Machine learning; Personality disorder; Systematic literature review

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v38.i2.pp1299-1307

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics