Enhanced driving assistance: automated day and night vehicle detection system utilizing convolutional neural networks

Abdelmoghit Zaarane, Ibtissam Slimani, Mourad Elhabchi, Issam Atouf

Abstract


This paper presents an enhanced real-time vehicle detection system using convolutional neural networks (CNNs) for both daytime and night-time conditions. Initially, the system determines the time of capture by analyzing the upper part of input images. For daytime detection, it uses normalized cross-correlation and two-dimensional discrete wavelet transform (2D-DWT) techniques. Night-time detection involves identifying vehicle lamps through color thresholding and connected component techniques, followed by symmetry analysis and CNN classification. The dataset for training includes images from the Caltech Cars, AOLP, KITTI Vision, and night-time vehicle detection datasets, ensuring robust performance across various lighting conditions. Experiments demonstrate the system's high accuracy, achieving 99.2% during the day and 98.27% at night, meeting real-time requirements and enhancing driving assistance systems' reliability.


Keywords


Convolutional neural network; Day-time detection; Driving assistance systems; Image processing; Night-time detection; Two-dimensional discrete wavelet transform; Vehicle detection

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v36.i3.pp1532-1542

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics