ADALINE-based synchronous detection for enhanced shunt APF performance

Abdesslam Ryad Mebarek, Leila Merabet, Chouaib Rahli, Salah Saad

Abstract


Power quality issues caused by current harmonics from nonlinear and unbalanced loads are a growing concern. This paper presents a novel control strategy for four-wire shunt active power filters (SAPF) that surpasses existing conventional methods in mitigating harmonics and power factor correction. The strategy employs an improved synchronous detection method (SDM) enhanced by an adaptive linear neural network (ADALINE) trained using the least mean square (LMS) algorithm. This approach accurately estimates harmonic frequencies, enabling the SAPF to generate precise compensation currents. The effectiveness of the proposed method is validated through MATLAB-Simulink simulations under balanced supply conditions, encompassing diverse load scenarios. These simulation results are compared with those obtained using instantaneous power theory (IPT). They demonstrate the ability of the proposed method to achieve excellent harmonic identification and elimination, to comply with IEEE 519 harmonic limits, to ensure sinusoidal and balanced line currents, and to compensate for reactive power and neutral current. Furthermore, its simple architecture and noise robustness make it a promising solution for enhancing power quality.

Keywords


ADALINE neural network; Non-linear load; Shunt active power filter; Synchronous detection method; Total harmonic distortion

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v37.i1.pp35-47

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics