Optimizing cloud tasks scheduling based on the hybridization of darts game hypothesis and beluga whale optimization technique
Abstract
This paper presents the hybridization of two metaheuristic algorithms which belongs to different categories, for optimizing the tasks scheduling in cloud environment. Hybridization of a game-based metaheuristic algorithm namely, darts game optimizer (DGO), with a swarm-based metaheuristic algorithm namely, beluga whale optimization (BWO), yields to the evolution of a new algorithm known as “hybrid darts game hypothesis – beluga whale optimization” (hybrid DGH-BWO) algorithm. Task scheduling optimization in cloud environment is a critical process and is determined as a non-deterministic polynomial (NP)-hard problem. Metaheuristic techniques are high-level optimization algorithms, designed to solve a wide range of complex, optimization problems. In the hybridization of DGO and BWO metaheuristic algorithms, expedition and convergence capabilities of both algorithms are combined together, and this enhances the chances of finding the higher-quality solutions compared to using a single algorithm alone. Other benefits of the proposed algorithm: increased overall efficiency, as “hybrid DGH-BWO” algorithm can exploit the complementary strengths of both DGO and BWO algorithms to converge to optimal solutions more quickly. Wide range of diversity is also introduced in the search space and this helps in avoiding getting trapped in local optima.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v38.i2.pp1195-1207
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).