PRDTinyML: deep learning-based TinyML-based pedestrian detection model in autonomous vehicles for smart cities

Norah N. Alajlan, Abeer I. Alhujaylan, Dina M. Ibrahim

Abstract


Detecting pedestrians and cars in smart cities is a major task for autonomous vehicles (AV) to prevent accidents. Occlusion, distortion, and multi-instance pictures make pedestrian and rider detection difficult. Recently, deep learning (DL) systems have shown promise for AV pedestrian identification. The restricted resources of internet of things (IoT) devices have made it difficult to integrate DL with pedestrian detection. Tiny machine learning (TinyML) was used to recognize pedestrians and cyclists in the EuroCity persons (ECP) dataset. After preliminary testing, we propose five microcontroller-deployable lightweight DL models in this study. We applied SqueezeNet, AlexNet, and convolution neural network (CNN) DL models. We also use two pre-trained models, MobileNet-V2 and MobileNet-V3, to determine the optimal size and accuracy model. Quantization aware training (QAT), full integer quantization (FIQ), and dynamic range quantization (DRQ) were used. The CNN model had the shortest size with 0.07 MB using the DRQ approach, followed by SqueezeNet, AlexNet, MobileNet-V2, and MobileNet-V2 with 0.161 MB, 0.69 MB, 1.824 MB, and 1.95 MB, respectively. The MobileNet-V3 model’s DRQ accuracy after optimization was 99.60% for day photos and 98.86% for night images, outperforming other models. The MobileNet-V2 model followed with DRQ accuracy of 99.27% and 98.24% for day and night images.

Keywords


Deep learning; IoT; Pedestrian detection; Smart cities; TinyML

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v39.i1.pp283-309

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics